Tubacex – Reducción consumo energético en Horno Eléctrico
Tubacex
Sector: Industria
Business Case
Utilizando los datos recogidos de proceso y PLC’s durante los últimos 5 años, desarrollar un modelo predictivo que recomiende el tiempo mínimo necesario en la fase de calentamiento para alcanzar la temperatura óptima de colado.
Objetivos
El objetivo consiste en reducir el consumo energético por colada y dotar de herramientas a los operarios para optimizar el proceso y evitar sobrecalentamientos de las coladas o procesos de colado por debajo de la temperatura óptima.
Use case
Por una parte, se comparten los datos mediante Snowflake para elaborar el dataset y se trabaja en el desarrollo en cloud de un modelo predictivo alimentado por un modelo previo descriptivo y los resultados serán mostrados en tiempo real al operario mediante la plataforma Grafana.
Infraestructura
Cloud
Tecnologías utilizadas
Aprendizaje Automático o Profundo
Datos utilizados
Los datasets son privados. Contienen registros de proceso reportados en sistema MES, unos 640 tags (PLC) que reportan por segundo. Nuestro “tiempo real” está estimado en 2 minutos.
Recursos utilizados
A nivel organizativo ha sido necesario 1 jefe de proyecto, 2 técnicos de SW (ETL y ML) y 2 técnicos de procesos internos de ACVA. Desarrollo técnico principalmente por IBERMATICA, y validación técnica, requisitos y viabilidad por parte de TUBACEX.
Dificultades y aprendizaje
La gran dificultad que hemos tenido ha sido el conocimiento, linaje y compresión de los datos, ha sido nuestro cuello de botella. Infraestructura HW y procedimiento ETL ya existente. Nos ha permitido aprender en el descubrimiento del dato y enfocar nuestro objetivo hacia DataProduct.
KPIs (impacto en el negocio y métricas del modelo)
RMSE (Root Mean Square Error). RMSE comparando las temperaturas predichas con las temperaturas reales. Cuanto menor sea el valor del RMSE, mejor será la precisión del modelo en predecir la temperatura final de la colada y con ello el consumo eléctrico, nuestro KPI objetivo.
Financiación
El proyecto ha sido financiado por el programa europeo COGNIPLANT.
Colaboradores
El proyecto ha sido desarrollado conjuntamente con IBERMATICA.